Varukorg
Varukorgen är tom!
Varukorgen inkl. moms 0 kr
Elektronisk distribution
Frakt inkl. moms 0 kr
Varav moms (6 %) 0 kr
Varav moms (25 %) 0 kr
Öresutjämning 0 kr
Att betala inkl. moms 0 kr

Statistical Sensor Fusion
- xiPreface
- 11Introduction
- 1.13Sensor Networks
- 1.26Inertial Navigation
- 1.37Situational Awareness
- 1.410Statistical Approaches
- 1.512Software Support
- 1.614Outline of the Book
- 19Part I Fusion in the Static Case
- 221Linear Models
- 2.122Introduction
- 2.223Least Squares Approaches
- 2.329Fusion
- 2.436The Maximum Likelihood Approach
- 2.539Cramér-Rao Lower Bound
- 2.641Summary
- 345Nonlinear models
- 3.146Introduction
- 3.247Nonlinear Least Squares
- 3.352Linearizing the Measurement Equation
- 3.457Inversion of the Measurement Equation
- 3.565A General Approximation Strategy
- 3.665Conditionally Linear Models
- 3.768Implicit Measurement Equation
- 3.870Summary
- 473Sensor Networks
- 4.174Typical Observation Models
- 4.276Target Localization
- 4.383NLS and SLS Solutions
- 4.489Dedicated Least Squares Solutions
- 4.592Extended Estimation Problems
- 4.697Summary
- 5101Detection and Classification Problems
- 5.1101Detection
- 5.2111Classification
- 5.3117Association
- 5.4121Summary
- 123Part II Fusion in the Dynamic Case
- 6125Filter Theory
- 6.1126Introduction
- 6.2129The Fusion-Diffusion Approach to Filtering
- 6.3131The Classical Approach to Nonlinear Filtering
- 6.4140Grid Based Methods
- 6.5143Nonlinear Filtering Bounds
- 6.6149Summary
- 7153The Kalman Filter
- 7.1154Kalman Filter Algorithms
- 7.2162Practical Issues
- 7.3168Computational Aspects
- 7.4175Smoothing
- 7.5181Square Root Implementation
- 7.6186Filter Monitoring
- 7.7188Examples
- 7.8192Summary
- 8195The Extended and Unscented Kalman Filters
- 8.1197DARE-based Extended Kalman Filter
- 8.2201Riccati-Free EKF and UKF
- 8.3205Target Tracking Examples
- 8.4208Summary
- 9211The Particle Filter
- 9.1212Introduction
- 9.2214Recapitulation of Nonlinear Filtering
- 9.3218The Particle Filter
- 9.4224Tuning
- 9.5226Choice of Proposal Distribution
- 9.6233Theoretical Performance
- 9.7236Complexity Bottlenecks
- 9.8239Marginalized Particle Filter Theory
- 9.9250Particle Filter Code Examples
- 9.10258Summary
- 10261Kalman Filter Banks
- 10.1262General Solution
- 10.2264On-Line Algorithms
- 10.3272Off-Line Algorithms
- 10.4276Summary
- 11279Simultaneous Localization and Mapping
- 11.1280Introduction
- 11.2288Kalman Filter Approach
- 11.3302The FastSLAM Algorithm
- 11.4306Marginalized FastSLAM
- 11.5310Summary
- 313Part III Practice
- 12315Modeling
- 12.1316Discretizing Linear Models
- 12.2318Discretizing Nonlinear Models
- 12.3321Discretizing State Noise
- 12.4323Linearization Error and Choice of State Coordinates
- 12.5326Sensor Noise Modeling
- 12.6330Choice of Sampling Interval
- 12.7333Calibration of Dynamical Systems
- 12.8340Summary
- 13343Motion Models
- 13.1344Translational Kinematics
- 13.2346Rotational Kinematics
- 13.3351Rigid-Body Kinematics
- 13.4352Constrained Kinematic Models
- 13.5356Odometric Models
- 13.6358Vehicle Models
- 13.7362Aircraft Dynamics
- 13.8364Underwater Vehicle Dynamics
- 13.9369Summary
- 14373Sensors and Sensor Near Processing
- 14.1373Ranging Sensors
- 14.2384Physical Sensors
- 14.3387Wheel Speed Sensors
- 14.4402Wireless Network Measurements
- 14.5410Summary
- 15413Filter and Model Validation
- 15.1413Parametric Uncertainty
- 15.2416Ground Truth Data
- 15.3422Sensor Calibration Issues
- 15.4424Summary
- 16427Applications
- 16.1427Sensor Networks
- 16.2431Kalman Filtering
- 16.3439Particle Filter Positioning Applications
- 453Appendices
- 455A Statistics Theory
- 455A1 Selected Distributions
- 457A2 Conjugate Priors
- 457A3 Nonlinear Transformations
- 471B Sampling Theory
- 471B1 Generating Samples from Uniform Distribution
- 472B2 Accept-Reject Sampling
- 475B3 Bootstrap
- 475B4 Resampling
- 476B5 Stochastic Integration by Importance Sampling
- 479B6 Markov Chain Monte Carlo
- 480B7 Gibbs Sampling
- 483C Estimation Theory
- 483C1 Basic Concepts
- 484C2 Cramér-Rao Lower Bound
- 488C3 Sufficient Statistics
- 490C4 Rao-Blackman-Lehmann-Scheffe's Theorem
- 490C5 Maximum Likelihood Estimation
- 491C6 The Method of Moments
- 492C7 Bayesian Methods
- 495C8 Recursive Bayesian Estimation
- 497D Detection Theory
- 497D1 Notation
- 498D2 The Likelihood Ratio Test
- 499D3 Detection of Known Mean in Gaussian Noise
- 503D4 Eliminating Unknown Parameters
- 504D5 Nuisance Parameters
- 506D6 Bayesian Extensions
- 507D7 Linear Model
- 509E Least Squares Theory
- 509E1 Derivation of Least Squares Algorithms
- 512E2 Matrix Notation and QR Factorizations
- 513E3 Comparing On-Line and Off-Line Expressions
- 518E4 Asymptotic Expressions
- 519E5 Derivation of Marginal Densities
- 538Index
Information
- Författare:
- Fredrik Gustafsson
- Språk:
- Engelska
- ISBN:
- 9789144127248
- Utgivningsår:
- 2010
- Revisionsår:
- 2018
- Artikelnummer:
- 33373-03
- Upplaga:
- Tredje
- Sidantal:
- 554