Logga in

Priserna visas inklusive moms och du betalar med Klarna


Priserna visas exklusive moms, du kan betala med Klarna eller faktura

Priserna visas inklusive moms och du betalar med Klarna


Priserna visas exklusive moms, du kan betala med Klarna eller faktura

Varukorg

Varukorgen är tom!

Varukorgen inkl. moms 0 kr


Elektronisk distribution

Frakt inkl. moms 0 kr


Varav moms (6 %) 0 kr

Varav moms (25 %) 0 kr

Öresutjämning 0 kr


Att betala inkl. moms 0 kr


Till kassan

Ordinary Differential Equations

Skickas följande arbetsdag

Karl Gustav Andersson Lars-Christer Böiers Ordinary Differential Equations This is a translation of a book that has been used for many years in Sweden in courses on ordinary differential equations for advanced undergraduate and beginning graduate students. It gives a careful and thorough introduction to the main areas of the field and should also be useful for engineers and applied mathematicians. Topics covered are existence, uniqueness and approximation of solutions, linear system...

Karl Gustav Andersson Lars-Christer Böiers Ordinary Differential Equations This is a translation of a book that has been used for many years in Sweden in courses on ordinary differential equations for advanced undergraduate and beginning graduate students. It gives a careful and thorough introduction to the main areas of the field and should also be useful for engineers and applied mathematicians. Topics covered are existence, uniqueness and approximation of solutions, linear systems with constant coefficients, power series solutions, eigenfunction expansions and qualitative methods for non-linear systems. The book contains many illustrative examples and almost three hundred exercises.

      • 0
        1
        Terminology and introductory examples
        • 0.1
          1
          Terminology
        • 0.2
          2
          Differential equations of first order
        • 0.3
          10
          Linear differential equations
        • 0.4
          20
          Systems of differential equations
        • 0.5
          28
          Initial value problems and boundary value problems
        • 0.6
          29
          Integral equations
      • 1
        31
        General theorems on existence and uniqueness
        • 1.1
          31
          Existence and uniqueness
        • 1.2
          46
          Linear systems
        • 1.3
          57
          Differential inequalities
        • 1.4
          59
          Approximate solutions
        • 1.5
          65
          Construction of solutions
        • 1.6
          71
          An orientation on numerical methods for solving differential equations
        • 1.7
          84
          Some historical notes
      • 2
        87
        Linear systems with constant coefficients
        • 2.1
          87
          The exponential function etA
        • 2.2
          102
          Homogeneous systems
        • 2.3
          108
          Inhomogeneous systems
        • 2.4
          115
          Decomposition into invariant subspaces
        • 2.5
          122
          Variable coefficients
        • 2.6
          123
          Systems of second order
        • 2.7
          127
          Some historical notes
      • 3
        131
        Differential equations with singular points
        • 3.1
          131
          Linear systems with analytic coefficients
        • 3.2
          135
          Singular points
        • 3.3
          148
          Frobenius’ method
        • 3.4
          160
          Some classical differential equations
        • 3.5
          167
          Some historical notes
      • 4
        171
        Boundary value problems Eigenfunction expansions
        • 4.1
          171
          Introductory example Separation of variables
        • 4.2
          177
          Boundary value problems
        • 4.3
          188
          Eigenvalues and eigenfunctions The spectral theorem
        • 4.4
          200
          Sturm-Liouville theory
        • 4.5
          215
          Convergence of eigenfunction expansions
        • 4.6
          224
          A general proof of the spectral theorem
        • 4.7
          235
          Some examples of singular Sturm-Liouville problems
        • 4.8
          245
          Some historical notes
      • 5
        253
        Autonomous systems
        • 5.1
          253
          Phase portraits
        • 5.2
          264
          Linear systems in the plane
        • 5.3
          268
          Liapunov’s method
        • 5.4
          280
          Investigation of stability via linearization
        • 5.5
          286
          Periodic solutions
        • 5.6
          303
          Systems of higher order
        • 5.7
          310
          Some historical notes
    • 317
      A The spaces Rn and Cn
    • 323
      B Bolzano-Weierstrass’ theorem
    • 327
      C Cauchy’s convergence principle
    • 331
      D Functions operating on matrices
    • 339
      Bibliography
    • 341
      Answers to the exercises
    • 363
      Index

Information

Författare:
Karl Gustav Andersson Lars-Christer Böiers
Språk:
Engelska
ISBN:
9789144134956
Utgivningsår:
2019
Artikelnummer:
40453-01
Upplaga:
Första
Sidantal:
374

Författare

Karl Gustav Andersson

Karl Gustav Andersson är universitetslektor i matematik vid Lunds universitet.

Lars-Christer Böiers

Lars-Christer Böiers är universitetslektor i matematik och har mångårig erfarenhet av undervisning vid Lunds Tekniska Högskola.

 ;